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Diurnal Variations in Warm Season Precipitation Frequencies 

in the Central United states 

Robert C. Balling, Jr. 

ABSTRACT 

This project was conducted to identify more clearly temporal and 
spatial patterns in the diurnal cycle of hourly warm season 
precipitation frequencies over the central United States. 
Harmonic analysis of 38 years of data from 1189 stations reveals 
a number of important time/space dimensions in the hourly 
rainfall statistics. Topics receiving attention in this report 
include (a) the remarkably uniform longitudinal gradient in the 
timing of maximum rainfall frequencies across most of the Great 
Plains, (b) the sharp break between continental and maritime 
rainfall regimes, . (c) intermonthly patterns in the diurnal 
variance structures, (d) sel ected anomal ies in the general 
patterns, and (e) the implications of the empirical findings to 
the many theories of the widespread nocturnal rainfall phenomenon 
of the Plains. 

1. INTRODUCTION 

The warm season nocturnal rainfall regime of the central 

United states continues to represent one of the most interesting 

features found in the North American climate system. Despite 

strong daytime surface heating in the summer period, relatively 

high atmospheric moisture levels near the surface, and a 

continental location well insulated from oceanic influences, the 

central Great Plains region displays most of its convective 

activity at night. Precipitation events (Kincer, 1916, Wallace, 

1975; Balling, 1985), thunderstorms (Means, 1944; Sangster, 1957; 

Pitchford and London, 1962; Rasmusson, 1971; Wallace, 1975; 
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Easterling and Robinson, 1985), lightning (Orville, 1981), and 

heavy rain associated with flash floods (Maddox ~ ~ 1979) all 

exhibit a strong nocturnal tendency in the central United States. 

A variety of physical and dynamical processes may 

contribute to the nocturnal character of the summertime rainfall 

in the region. Radiative and/or evaporative cloud top cooling 

(Hales, 1977), downslope air drainage (Bleeker and Andre, 1951, 

Holton, 1967), atmospheric tidal motions (Wallace and Hartranft, 

1969, Hamilton, 1981, Kato ~ ~ 1982), lower tropospheric warm 

advection (Maddox and Doswell, 1982), and the low-level jet 

(Means, 1944, 1954, Sangster, 1957; Curtis and Panofsky, 1958, 

Hering and Borden, 1962, Pitchford and London, 1962, Hoecker, 

1965, Bonner, 1966, 1968, paegle and MCLawhorn, 1973; Hoxit, 

1975, Astling ~~, 1985) have all been proposed as causal 

mechanisms for the observed diurnal patterns. The recent work by 

Maddox (198B,1983) on the development, maintenance, and decay of 

mesoscale convective complexes also provides insights into the 

mechanisms that are responsible for the diurnal variations in 

warm season rainfall in the midwestern states. 

Over the past ten years, several studies have appeared in 

the literature that clarify significantly the time and space 

dimensions in precipitation and thunderstorm data in the central 

United States (Wallace, 1975, Easterling and Robinson, 1985, 

Balling, 1985). Balling (1985) used an especially dense network 

of stations (515 stations in Wyoming, Colorado, North Dakota, 

South Dakota, Nebraska, Kansas, Oklahoma, Iowa, Missouri) to 

identify gradients in (a) the time of maximum precipitation 

frequency, (b) the portion of all rainfall frequencies occurring 
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at night, and (c) the relative importance of the diurnal cycle. 

The primary purpose of the project reported here was to 

extend the spatial extent of Balling's network to include 

Montana, New Mexico, Texas, Louisiana, Arkansas, Illinois, 

Indiana, Wisconsin, and Minnesota. Analyses of the warm season 

precipitation frequencies over the larger areal unit should 

clarify climatological patterns in the diurnal variations of 

precipitation over much of the central United States. The more 

precise identification of these precipitation patterns provides 

the empirical foundation for (1) assessing the many theories of 

the nocturnal rainfall regime, (2) evaluating the accuracy of 

numerical models constructed to simulate rainfall patterns in the 

region, and (3) ai~ing forecasters in preparing precipitation 

probabilities for various periods during the day. 
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2. HOURLY PRECIPITATION DATA 

Hourly precipitation data for the study area (Fig. 1) were 

obtained from the Illinios State water Survey. The period of 

record began in 1948 for all the states and ended variously 

between 1975 and 1983 (Table 1). All hourly rainfall observations 

were rounded to the nearest B.Bl inch (B.25 mm). The original 

sources of these data included the published hourly precipitation 

records from the first-order stations and the weighing raingauge 

chart reports from the second-order and cooperative stations. A 

limited collection period eliminated many stations leaving a 

total of IlB9 stations in the study area available for further 

analysis (Fig. 1). 

Table 1. Description of hourly precipitation data 

Number of Years of 
State stations record 

Arkansas 59 1948-1975 
Colorado 7B 1948-1977 
Illinois 66 1948-1983 
Indiana 63 1948-1983 
Iowa 67 1948-1977 
Kansas 66 1948-1977 
Louisiana 21 1948-1978 
Minnesota 51 1948-1983 
Missouri 82 1948-1977 
Montana 65 1948-1978 
Nebraska 58 1948-1978 
New Mexico 54 1948-1978 
North Dakota 4B 1948-1977 
Oklahoma 6B 1948-1977 
South Dakota 35 1948-1977 
Texas 155 1948-1978 
Wisconsin 6B 1948-1978 
Wyoming 37 1948-1977 
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Distribution of the 1189-station network. 
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A total of 4,747,184 actual hourly rainfall measurements 

~8.81 inch (8.25 mm) were recorded at the 1189 sites during the 

warm season months (April to September). Each of these 

observations was corrected to True Solar Time (TST) to avoid 

problems associated with time zone boundaries within the study 

area. The transformation to TST began by assuming that the 

rainfall during an hour interval occurred at 38 minutes past the 

hour. The longitude of the station was compared to the local 

meridian for the associated time zone (e.g., 75 0 W for the 

Eastern time zone, 98 0 W for the Central time zone, and 185 0 W 

for the Mountain time zone) to determine a lag between TST and 

local time. The time correction was then adj usted for the sun­

fast or sun-slow problem associated with the Earth's orbital 

configuration. If the total correction ex~eeded 1/2 hour, the 

time of the precipitation trequencies was adjusted ahead or 

behind to the adjacent time interval. Artifical longitudinal 

gradients in the time of precipi ta tion events of 1 h per 150 of 
I 

long. were also eliminated by converting all observations to TST. 

An 1189 (station) x 24 (hour) matrix of precipitation 

frequencies was constructed from the large array of TST hourly 

rainfall data. This matrix contained the total number of warm 

season precipitation events that occurred in each hourly interval 

at each station. No row in this matrix had fewer than 1888 total 

occurrences, and every cell in the 1189 x 24 matrix contained a 

non-zero integer. Because this study deals exclusively with the 

diurnal variance patterns in rainfall frequencies, a limited 

number of missing days at any station does not jeopardize 
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seriously the quality of the data base. Variations in the period 

of record from one station to the next may create some 

differences in the climatological patterns in this report. 

Four other 1109 x 24 matrices were also constucted from 

the array of hourly precipitation data. One of these matrices 

contained the hourly frequencies of warm season events that were 

) 0.10 inch (2.54 mm) per hour. This matrix of the larger 

rainfall rates contained 1,467,621 events representing 30.92% of 

all recorded events. The remaining three 1109 x 24 matrices 

contained frequencies for all event.s for (a) April and May, (b) 

June and July, and (c) August and September. 
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3. METHODOLOGY 

Harmonic analysis (Rasmusson, 1971; Wallace, 1975; 

Schwartz and Bosart, 1979; Landin and Bosart, 1985; Easterling 

and Robinson, 1985; Balling, 1985) was applied to each row 

(station) in these matrices to generate a number of useful 

statistics regarding the diurnal variance patterns. The basic 

equation of harmonic analysis may be expressed as: 

A - N/2 
P = P + t Ar cos ( r e - cf> r) 

r;;,l 
A _ 

where P is the estimated precipitation frequency, P is the 

average hourly frequency over the N observations (24-hourly 

intervals) in the data population, A is the amplitude of the wave 

equal to (a r
2 + br

2)S.5, r is the frequency, e equals 2'TTX/N 

where X is the hour of the day, and cf> is the phase angle of the 

curve calculated as tan-l (ar/br ). The parameters a r and br are 

determined as: 

N 
a r = (2/N) 4 Pi sin (re) 

and i=~ 

br = (2/N) 
i=l 

where Pi is the actual frequency for each hour. Useful 

statistics from these harmonic analyses that are reported in this 

study include the following: 

(1) The time of maximum precipitation frequency in the 

diurnal cycle determined explicitly from the phase angles of the 

harmonic curves. These values are affected by the use of the 
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midpoint in each hourly interval as the precise time of 

precipitation events (e.g., B13B TST represents the interval 

BlBB-B2BB TST). 

(2) A standardized amplitude Ar' of the harmonics equal to 

Ar /2P. This value is bounded by B and unity and provides an 

index of the concentration of precipitation in the peak period of 

the diurnal cycle. If the precipitation events are evenly 

distributed through the 24-h period, Ar'equals zero. If all 

events occur in only one of the hourly intervals, Ar' of the 

first harmonic equals 1. A useful parameter related to hourly 

rainfall probabilities may be generated when the standardized 

amplitude is multiplied by 2 and added to 1. For example, a 

standardized ampl i tude of B.lB imp 1 ies that the probability of 

rainfall in the peak period (considering only the first harmonic) 

is 1.2B times th.e 24-h mean val ue. The computational procedure 

used in this investigation produces standardized amplitudes that 

are by def ini tion one-hal f as 1 arge as the val ues reported by 

others (Rasmusson, 1971, wallace, 1975, Schwartz and Bosart, 

1979, Landin and Bosart, 1985, Easterling and Robinson, 1985). 
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4. RESULTS: COMBINED WARM SEASON MONTHS 

The percentage of all warm season precipitation events 

occurring at night (2S'HJ-S8fU' TST) exceeds 6S% in southern 

Nebraska, central Kansas, western Oklahoma, and the northeastern 

portion of the Texas Panhandle (Fig. 2). Surrounding the core 

region is a widespread area where at least 55% of the rain events 

occur during the night hours. A south-central portion of New 

Mexico al so displ ays a 55% isol ine that extends into Texas and 

presumably across the Mexican border. Boothville, Louisiana 

shows a strong nighttime maximum apparently associated with its 

location and strong control by oceanic influences. 

Areas with strong daytime rainfall preferences are also 

clearly displayed in Fig. 2. The western region of the study 

area shows at least 55% of its rainfall frequencies occurring 

from IBII to 2111 TST. The strongest daytime maximum occurs in 

central Louisiana where more than 71% of all warm season events 

occur in the daytime period at several stations. 

The standardized amplitudes associated with the first 

harmonic indicate where the diurnal cycle is most pronounced 

across the study area (Fig. 3). Most of the central Plains 

display an amplitude greater than S.ll, the largest values tend 

to occur in the western portion of the Plains. Other areas where 

the standardized amplitudes exceed 1.11 include southeastern 

Texas, southern Arkansas, and most of Louisiana. Below l.lS, the 

diurnal patterns are not well defined, and the spatial patterns 

of the phase angles appear to lose spatial coherency. 

IS 



Figure 2. Frequencies (percent) 
precipitation for 

11 

of 
all 

nocturnal 
events. 

warm 

50 

season 



Figure 3. First-harmonic standardized amplitudes (xlS2) for all 
events. 
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The phase angles associated with the first-harmonic curves 

help to clarify the precipitation patterns in the central United 

Sta tes (Fig. 4). Isol ines of equal time of maximum show a 

tendency for storms to occur in the early evening near the Front 

Range of the Rocky Mountains, near midnight in the central 

Plains, and near 8588 TST in central Missouri. A strong 

longitudinal gradient of approximately 1 h per 188 km exists 

across most of the central portion of the study area. This 

general pattern breaks sharply in southwestern Texas where the 

time of maximum shifts abruptly from near midnight to 

midafternoon. 

The Gulf Coast shows a very different pattern with a far 

more latitudinal gradient extending away from the shore. In 

southeastern Texas, the time of maximum occurs near 1888 TST; in 

northern Louisiana, the maximum is near 1688 TST. Areas with 

standardized amplitudes less than 8.18 show a fairly noisy 

pattern for which meaningful isolines could not be constructed. 

However, in most of these areas the time of maximum occurrence 

can be safely interpolated from nearly isoline values. 

The second harmonics were rarely important fea'tures of the 

diurnal variations in precipitation frequencies in the central 

Uni ted States. In areas of especially high first-harmonic 

standardized amplitudes, the second harmonic appears simply to 

reinforce the primary maximum. The only exception of note occurs 

in northeastern New Mexico where important second-harmonic curves 

suggest a secondary maximum of early afternoon showers. Higher 
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Figure 4. time (TST) of maximum 
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harmonics (r=3,4,5,6) did not appear to be important anywhere in 

the study area. 

The pattern for the larger precipitation measurements of 

at least 2.54 mm per hour are generally similar to the patterns 

discussed for all events. The substantial differences that exist 

include the following the following: 

(1) The bigger events generally have a stronger diurnal 

modulation in the rainfall frequencies. In a large portion of the 

central Plains, more than 69% of the precipitation events occur 

at night (Fig. 5) and a few stations in southeastern Nebraska 

approach the 71% level. The area of nocturnal domination appears 

to broaden wi th increasing 1 a ti tude in the study area. A steep 

longitudinal gradient extends westward to the Front Range where 

less than 41% of the rainfall occurs at night. Central Louisiana 

shows a tendency for the larger events to occur during the 

daytime hours. The strong diurnal modulation in these events is 

also evident in the higher values in the standardized amplitudes 

(Fig. 6). 

(2) Although the same longitudinal gradient of 1 h per 

111 km in the timing of maximum events appears across most of the 

central Plains (Fig. 7), the larger events tend to occur 1 - 2 h 

earlier. The sharp discontinuity in southwestern Texas is absent 

for the larger precipitation events. The Gulf Coast again shows 

a strong tendency for storms to occur near 1491 TST inland, but 

the late morning values along the coast are absent for the larger 

events. Some evidence al so suggests that the nighttime storms 

tend to move faster in the northern parts of the Great Plains and 

slower in the southern Plains. 
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Figure 6. First-harmonic standardized amplitudes 
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Figure 7. First-harmonic 
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5. RESULTS: INTERMONTHLY PATTERNS 

The spatial and temporal patterns presented for the 

combined six months of the warm season may mask sUbstantial 

changes that take place through the period. In this section, 

results are presented for the three 2-month sub-periods in the 

warm season. 

Analyses of the April and May data reveal the strongest 

diurnal modulations in the southwestern portion of the study area 

(Fig. 8). The central Plains generally have sl ightly more than 

55% of their rainfall at night (2'HHJ-9899 TSTh only a few 

stations in southwestern Texas show more that 69% of their 

rainfall at night in these months (Fig. 9). western New Mexico 

displays a similar propensity for daytime storms, but most of the 

study area shows a near-even split between daytime and nighttime 

frequencies. The time of maximum (Fig. 19) for the area with 

standardized amplitudes ~ 9.19 displays a consistent longitudinal 

gradient from 1799 TST in central New Mexico to 9299-in eastern 

Kansas. 

June and July appear to be the two months with the 

strongest modulations in the precipitation frequency data. 

Nearly all the study area shows a standardized amplitude greater 

than 9.19 (Fig. 11), a few stations in Colorado and Kansas exceed 

the 9.59 level. A core area extending from northern Texas 

through western Okl ahoma, central Kansas, and southeastern 

Nebraska exceeds 65% nighttime precipitation f requency(Fig. 12). 
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Figure 11. First-harmonic 
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Figure 12. Nocturnal precipitation frequencies (percent) for the 
June and July events. 
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The steepest gradients extend away from this core area to the 

west where less than 49% of the rain occurs at night in western 

Colorado and New Mexico. Gradients to the south lead to 

nighttime rainfall frequencies less than 35% in southern Texas, 

and less than 25% in eastern Louisiana. 

The phase angles associated with the first harmonic curves 

reveal a consistent longitudinal gradient and a maximum that 

occurs near 1899 TST along the Front Range to 9499 TST along a 

diagonal from central Iowa through central Oklahoma (Fig. 13). A 

sharp break between the Great Plains rainfall regime and a Gulf 

Coast regime extends across central Texas, southeastern Oklahoma, 

northwestern Arkansas, and into southern Missouri. South of the 

discontinuity the coastal regime dominates with, morning rainfall 

along the coast and early afternoon storms at the more inland 

stations. 

The patterns so firmly established for June and July 

deteriorate during August and September. The area of 65% 

nocturnal rainfall in the Great Plains begins to shrink, and the 

distinctive afternoon shower pattern of the Rockies is lost (Fig. 

14). ,The area of 9.19 standar4ized amplitudes is reduced, and 

the levels of the standardized amplitudes are lower than those in 

June and July (Fig. 15). In a 1 arge area in central Texas, the 

amplitudes fall below 9.19. 

Several interesting features appear on the map showing the 

hour of maximum precipitation frequencies (Fig. 16). The central 

Plains continue to be dominated by the familiar longitudinal 

pattern of approximately 1 h per 199 km. However, the Gulf Coast 
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Figure 13. First-harmonic time 
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Figure 14. Nocturnal precipitation frequencies (percent) 
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Figure 15. First-harmonic standardized 
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Figure 16. First-harmonic time of 
and September 
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pattern is now inverted, and rainfall events occur later nearer 

the coastal stations. A strong gradient across Arkansas suggests 

a climatic connection between the regime of the Plains and the 

regimes of the coastal area. Southwest Texas reveals a 

relatively small area that appears to operate independently of 

the regimes to the southeast and northwest. 

30 



6. APPLICATIONS 

The purpose of this study was to identify more clearly the 

time and space patterns in warm season precipitation frequencies 

in the central united States. Percentages of nocturnal 

precipitation events, times of maximum rainfall frequency, and 

standardized amplitudes from first-harmonic curves are generated 

for the combined six-month warm season and for the three two­

month subperiods. The 15 maps displaying the spatial patterns in 

these statistics may serve a variety of useful functions 

including the following: 

(1) The spati'al patterns presented in this study may be 

used in evaluating theories of nocturnal rainfall in the central 

united States. Any of the theories of this phenomenon should be 

capable of explaining the spatial and temporal patterns presented 

in this report. 

(2) The climatological patterns in the diurnal 

precipi tation variation$ may be useful in the analyses of 

individual precipitation events. An event may be placed into 

some climatological context by comparing the timing and movement 

of the individual case with the long-term patterns presented in 

this report. 

(3) As more sophisticated numerical models are constructed 

for the precipitation processes in the central United states, the 

resul ts of this study may prove valuable in model verification. 

Numerical models of summertime rainfall in the Plains should be 

capable of simulating the general time and space patterns 
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revealed in the precipitation frequencies. 

(4) At the operational weather forecasting level, the 

results of this investigation may be immediately useful to 

meteorologists in preparing precipitation probabilities for 

different times of day. 
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